

BASUDEV GODABARI DEGREE COLLEGE , KESAIBAHAL

 Department of Computer Science
“SELF STUDY MODULE”

Module Details :
• Class – 3rd Semester (2019-20) Admission Batch

• Subject Name : COMPUTER SCIENCE

• Paper Name : DATABASE MANAGEMENT SYSTEM

UNIT – 2 : STRUCTURE
2.1 Introduction to Database Design Theory and Normalization

2.2 Functional Dependencies

2.3 Normal Forms based on Primary Keys,

2.4 Second and third Normal Forms,

2.5 Join Dependencies and Fifth Normal Form

Learning Objective
After Learning this unit you should be able to

• Know the Basic Concept of Object Oriented Programming

• Know to write simple JAVA program

• Know how to use constructor in the program.

You Can use the Following Learning Video link related to above topic :

https://youtu.be/T7AxM7Vqvaw

https://youtu.be/vsz8PoQos_0

https://youtu.be/5GDTIUVlHB8

https://youtu.be/Tp37HXfekNo

You Can also use the following Books :

S.NO Book Title Author

1 Programming in JAVA E.Balguru Swamy

2 The Complete Reference to JAVA HERVERTSEHILDT

And also you can download any book in free by using the following website.
• https://www.pdfdrive.com/

https://youtu.be/vsz8PoQos_0
https://youtu.be/5GDTIUVlHB8

DBMS – Normalization

Database Management System or DBMS in short refers to the technology of

storing and retrieving usersí data with utmost efficiency along with appropriate

security measures. This tutorial explains the basics of DBMS such as its architecture,

data models, data schemas, data independence, E-R model, relation model,

relational database design, and storage and file structure and much more.

Normalization

If a database design is not perfect, it may contain anomalies, which are like a bad
dream for any database administrator. Managing a database with anomalies is next
to impossible.

• Update anomalies − If data items are scattered and are not linked to each
other properly, then it could lead to strange situations. For example, when we
try to update one data item having its copies scattered over several places, a
few instances get updated properly while a few others are left with old values.
Such instances leave the database in an inconsistent state.

• Deletion anomalies − We tried to delete a record, but parts of it was left
undeleted because of unawareness, the data is also saved somewhere else.

• Insert anomalies − We tried to insert data in a record that does not exist at
all.

Normalization is a method to remove all these anomalies and bring the database to
a consistent state.

First Normal Form

First Normal Form is defined in the definition of relations (tables) itself. This rule
defines that all the attributes in a relation must have atomic domains. The values in
an atomic domain are indivisible units.

We re-arrange the relation (table) as below, to convert it to First Normal Form.

Each attribute must contain only a single value from its pre-defined domain.

Second Normal Form

Before we learn about the second normal form, we need to understand the following
−

• Prime attribute − An attribute, which is a part of the candidate-key, is known
as a prime attribute.

• Non-prime attribute − An attribute, which is not a part of the prime-key, is
said to be a non-prime attribute.

If we follow second normal form, then every non-prime attribute should be fully
functionally dependent on prime key attribute. That is, if X → A holds, then there
should not be any proper subset Y of X, for which Y → A also holds true.

We see here in Student_Project relation that the prime key attributes are Stu_ID and
Proj_ID. According to the rule, non-key attributes, i.e. Stu_Name and Proj_Name
must be dependent upon both and not on any of the prime key attribute individually.
But we find that Stu_Name can be identified by Stu_ID and Proj_Name can be
identified by Proj_ID independently. This is called partial dependency, which is not
allowed in Second Normal Form.

We broke the relation in two as depicted in the above picture. So there exists no
partial dependency.

Third Normal Form

For a relation to be in Third Normal Form, it must be in Second Normal form and the
following must satisfy −

• No non-prime attribute is transitively dependent on prime key attribute.

• For any non-trivial functional dependency, X → A, then either −

o X is a superkey or,
o A is prime attribute.

We find that in the above Student_detail relation, Stu_ID is the key and only prime
key attribute. We find that City can be identified by Stu_ID as well as Zip itself.
Neither Zip is a superkey nor is City a prime attribute. Additionally, Stu_ID → Zip →
City, so there exists transitive dependency.

To bring this relation into third normal form, we break the relation into two relations
as follows −

Boyce-Codd Normal Form

Boyce-Codd Normal Form (BCNF) is an extension of Third Normal Form on strict
terms. BCNF states that −

• For any non-trivial functional dependency, X → A, X must be a super-key.

In the above image, Stu_ID is the super-key in the relation Student_Detail and Zip is
the super-key in the relation ZipCodes. So,

Stu_ID → Stu_Name, Zip

and

Zip → City

Which confirms that both the relations are in BCNF

What is Join Dependency?

If a table can be recreated by joining multiple tables and each of this table have a
subset of the attributes of the table, then the table is in Join Dependency. It is a
generalization of Multivalued Dependency

Join Dependency can be related to 5NF, wherein a relation is in 5NF, only if it is
already in 4NF and it cannot be decomposed further.

Example

<Employee>

EmpName EmpSkills EmpJob (Assigned Work)

Tom Networking EJ001

Harry Web Development EJ002

Katie Programming EJ002

The above table can be decomposed into the following three tables; therefore it is
not in 5NF:

<EmployeeSkills>

EmpName EmpSkills

Tom Networking

Harry Web Development

Katie Programming

<EmployeeJob>

EmpName EmpJob

Tom EJ001

Harry EJ002

Katie EJ002

<JobSkills>

EmpSkills EmpJob

Networking EJ001

Web Development EJ002

Programming EJ002

Our Join Dependency −

{(EmpName, EmpSkills), (EmpName, EmpJob), (EmpSkills, EmpJob)}

The above relations have join dependency, so they are not in 5NF. That would mean
that a join relation of the above three relations is equal to our original
relation <Employee

Join Dependency

o Join decomposition is a further generalization of Multivalued dependencies.

o If the join of R1 and R2 over C is equal to relation R, then we can say that a join

dependency (JD) exists.

o Where R1 and R2 are the decompositions R1(A, B, C) and R2(C, D) of a given

relations R (A, B, C, D).

o Alternatively, R1 and R2 are a lossless decomposition of R.

o A JD ⋈ {R1, R2,..., Rn} is said to hold over a relation R if R1, R2,....., Rn is a

lossless-join decomposition.

o The *(A, B, C, D), (C, D) will be a JD of R if the join of join's attribute is equal to

the relation R.

o Here, *(R1, R2, R3) is used to indicate that relation R1, R2, R3 and so on are a

JD of R.

QUESTION BANK :-

1. Define redundancy?
2. Define functional dependency?
3. Explain the problems with Redundancy?
 4. What is decomposition? Explain the properties of
Decomposition?
5. Discuss normalization? 6. Illustrate functional dependency
with example?
7. Illustrate fully functional dependency with example?
 8. Demonstrate transitive dependency? Give an example?
9. Define First Normal Form?
10. Define Second Normal Form?
11. Define Third Normal Form?
 12. Explain about Loss Less Join Decomposition?
13. Describe Dependency Preserving Decomposition?
 14. What is multi valued Dependency?
 15. Define Fourth Normal Form?
 16. Define Join Dependency?
17. Define BCNF?
 18. Explain Fifth Normal Form?
 19. Explain about Inclusion Dependency?

